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ABSTRACT 

Technological advances and research are pushing the application of unmanned vehicles 

in exciting directions. This thesis emphasis is on cost estimation for a new unmanned 

aerial vehicle (UAV) with swarm applications. The new swarm UAV theoretical can be 

designed to emulate the current unmanned aerial system (UAS) mission, and expand 

upon the communication relay mission. Small UASs have a line-of-sight capability 

limitation that leaves room for improvement. The UAVs organic to the U.S. Marine 

Corps (USMC) are the primary focus for this analysis because organic USMC UAVs are 

habitually small UAVs. The analysis will determine a rough cost estimation range for a 

future AV with new technology. Based on the adaptation of networking topologies and 

research, the communication relay mission is a feasible capability to peruse in future 

swarm UAVs. The analysis suggests that a swarm UAV is comparable in cost to legacy 

UAVs currently in service in the USMC. 
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EXECUTIVE SUMMARY 

Technological advances and research are pushing the application of unmanned vehicles 

in exciting directions. This thesis emphasis is on cost estimation for a new unmanned 

aerial vehicle (UAV) with swarm applications. The new swarm UAV theoretical can be 

designed to emulate the current unmanned aerial system (UAS) mission, and expand 

upon the communication relay mission. Small UASs have a line-of-sight capability 

limitation that leaves room for improvement. The UAVs organic to the Marine Corps 

(USMC) are the primary focus for this analysis because organic USMC UAVs are 

habitually small UAVs. The analysis will determine a rough cost estimation range for a 

future AV with new technology. Based on the adaptation of networking topologies, and 

research the communication relay mission is a feasible capability to peruse in future 

swarm UAVs. The analysis suggests that a swarm UAV is comparable in cost to legacy 

UAVs currently in service in the USMC. 

In his report on battlefield robotics, Paul Scharre (2014) of the Center for New 

American Security put for several recommendations to the Department of Defense 

(DOD).  He suggested that the Office of the Secretary of Defense “undertake a study on 

swarming platforms to examine the potential for low-cost uninhabited systems to impose 

costs on adversaries” (p. 8). Analysis suggests that the cost, based on the data collected 

and the independent variables used, could range from $0.33 million to $89 million for a 

single AV.  

Scharre also recommended that the Department of the Army and USMC “conduct 

a series of experiments on swarming uninhabited air vehicles for persistent surveillance, 

close air support, aerial resupply and communications relay to support ground maneuver 

forces” (2014, p 9).  

This research also highlights some capabilities that exist and have been tested to 

allow UAVs and swarm UAVs to conduct information exchange and communications 

exchange.  

 

 



 

 xvi

LIST OF REFERENCES 

Scharre P. (2014). Robotics on the battlefield part II: The coming swarm. Washington, 
DC: Center for a New American Security. Retrieved from 
http://www.cnas.org/sites/default/files/publicationspdf/CNAS_TheComingSwarm
_Scharre.pdf 

 
  



 

 xvii

ACKNOWLEDGMENTS 

I want to thank my family and friends for their support during my thesis and my 

time at Naval Postgraduate School (NPS). The positive demeanor and encouragement of  

my thesis advisors, John Dillard and Douglas Brinkley, were a calming influence during 

my thesis adventure. In addition to my thesis advisors, there are several individuals I also 

want to thank for their devotion to learning: Simona Tick, Thomas Albright, Nicholas 

Dew and Daniel Nussbaum.  

Finally, I want to thank the Thesis Processing Office and the editors from the 

Acquisition Research Program.  

 



 

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 

 1

I. INTRODUCTION 

A. PROBLEM STATEMENT  

Decreasing budgetary environments will limit the acquisition of larger unmanned 

aerial vehicles (UAVs) for many organizations. The long-term life-cycle cost to maintain 

a highly technical and large unmanned aerial system (UAS) creates a significant 

challenge for increasing capabilities without introducing more costs. The Department of 

Defense (DOD) identified UAS programs as an area with the potential to provide more 

value in UAS’s capabilities through the leveraging of emerging technologies. The DOD 

has directed its’ services to search out more value within their respective joint- and 

service- centric UAS programs. Future UAS operations require like-minded organizations 

to depart from the single-mission, single-payload–capable UAS to a multi-mission, multi-

capable platform UAS (DOD, 2013). The relatively newly acquired RQ-21A Black Jack, 

Small Tactical Unmanned Aircraft System’s (STUAS’s) increased capabilities highlight 

the necessity for future UASs to capitalize on the forward momentum created by 

technological advances and miniaturization. When the RQ-21 is compared to its closest 

contemporary the RQ-7B, a stark contrast is present between the RQ-7B’s nine hours of 

airborne endurance time and the RQ-21A’s 16 hour endurance time. The RQ-7B is three 

times heavier than the RQ-21A and it has a quarter less speed. The Marine Corps is 

focused on increasing the capabilities of its small UAV fleet, which includes the RQ-7B 

Shadow, RQ-11 Raven, WASP, and RQ-21A, UAS programs (United States Marine 

Corps [USMC], 2014).  

Like other organizations, the Marine Corps has a significant fleet of UAVs 

categorized as medium to small UASs, and this fleet continues to expand. The efficient 

application of new technologies and creative thinking is the key to maintaining the 

relevance and value of the small UAS fleet in future worldwide operations. Small UASs 

must increase the capabilities of the individual UAVs and ground control stations (GCSs) 

in the areas of beyond line of sight (BLOS) and over the horizon (OTH) communications. 

Merely providing intelligence surveillance and reconnaissance (ISR) as the singular 

capability provided by a UAV is no longer cost effective. Small UASs must provide 
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similar capabilities to those associated with larger UASs, such as extended 

communications, strike, wireless networking communications, proximity avoidance, and 

electronic warfare.  

The vision to achieving more value in the acquisitions for future UASs is outlined 

in two forward looking policy documents DOD (2013) and USMC (2014) discusses the 

utilization of advancements in UAV and UAS information sharing; multiple air vehicles 

(AVs) control by  one ground control station (GCS), AVs controlled by mobile device, 

wireless communications technology embedded in AVs, and finally possessing the 

compulsion to incorporate the entirety of those technological characteristics into a swarm 

of UAVs and UASs. Those documents set specific areas to increase capability and focus 

effort for future UAS programs for the DOD and USMC. 

B. BACKGROUND 

BLOS and OTH capabilities are required to give UAV support to troops operating 

at extended range. The MV-22 Osprey has the ability to deliver troops to ranges that 

extend beyond some UASs line of sight (LOS) operating range. To support troops outside 

of 150-nautical mile (nm) range, UAS generally employ a hub-and-spoke method of 

operating. The hub-and-spoke method is characterized by one or two UASs or one or two 

GCSs maintaining LOS to allow a single UAV to transition between LOS connectivity 

from one GCS to another GCS. The transition of an AV between one GCS and another 

GCS is the current operating procedure employed by the larger STUAS UASs to extend 

operations and support range to troops on a battlefield. Hub-and-spoke operations are 

limited by LOS in a linear battle field or during ship-to-shore operations, due to the 

location of the enemy and the necessity to separations the GCS from close proximity to 

enemy (Department of the Army [DOA], 2006a, p.29). Larger STUAS are also called 

tactical unmanned aerial vehicles (TUAS). There are a clear distinctions between the 

STUAS and TUAS however, for simplicity, TUAS will be associated with the acronym 

STUAS for this thesis.  

LOS and the transition required to extend AV range from launch point to the 

operating area is the crux of small tactical unmanned air system (STUAS) operations 



 

 3

(Ryan & Frater, 2001). The requirement for establishing a spoke to allow for hub-and-

spoke operations is a limitation for larger STUAS’s. From ship-to-shore, establishing a 

spoke is a costly expenditure for the following reasons: manpower, fuel, and flight time. 

In short, the energy costs can skyrocket to support hub-and-spoke UAV operations from 

ship to shore. The Marine Corps is acquiring UASs with the capability to utilize 

amphibious ships for landing and takeoff, and now the Marine Corps needs to extend the 

range of STUAS’s UAVs to keep up with and support the Marine Aviation Ground Task 

Force (MAGTF) increased maneuverability.  

While considering a means to allow STUASs to keep up with the MAGTF more 

question arouse. What technology is available to supplement hub-and-spoke UAV 

operations from ship to shore, which will decrease the energy requirement of a traditional 

hub-and-spoke operation employing a forward GCS?  What concept or technology is 

available to allow airborne UAVs to act as spokes? Does the technology exist to allow 

STUAS UAVs to share information with each other, the customer on the ground, and the 

command operating center?  The technology does exist in varying degrees and 

applications, but not as one unique set of capabilities present in a system or individual 

UAS or UAV. Chapter II presents a review of the literature on the singular sets of 

technologies and studies predominantly using commercial off-the-shelf (COTS) products 

to address the gap in STUAS capabilities. An example of the types of COTS AVs used 

are the tri-copters (examples of inexpensive UAVs) and plug-in WLAN Wi-Fi devices. 

Tri-copters are relatively close in size to STUASs, and Wi-Fi WLAN plug-ins are 

capable of supporting wireless communication networks. The MAGTF uses Marine UAS 

the motivation here is expand the future capabilities of UAVs to support the MAGTF. 

C. MOTIVATION 

The initial idea that sparked this thesis topic came from the knowledge of a 

communication limitation based on LOS and OTH communications. Communications 

retransmissions vehicles, airborne platforms, communication balloons, large UAVs, and 

satellite communications are all employed to mitigate LOS and OTH communication on 

the battlefield. The Marine Corps’ fleets of  UASs are categorized as STUASs, which 
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means they have less time on station and fewer capabilities than the larger UAVs. What 

happens when all other aircraft assets are tasked out with higher priorities, and a Marine 

expeditionary unit (MEU) of 2,000 Marines, deployed on amphibious shipping, are 

tasked with a humanitarian mission or raid, 150–250 nm inland? The answer is the 

Marine Corps or Navy aviation can transport the Marines to the desired location. 

However, a STUAS lacks the operational distance at that range to provide support to the 

Marines on the ground unless STUAS GCSs are transported to the location or the 

amphibious ship moves close to shore. Flexibility and more innovation is the key to 

UASs like the STUAS increasing its supportability range past LOS and OTH limitations. 

At present STUAS is tied to the uplink and downlink control signal required to control 

the semi-autonomous AV.  

The first thought to combat this limitation was to make the GCS small enough to 

operate on a tablet or cell phone to allow the infantryman to control it themselves. There 

are three issues with that idea. The first problem places the burden of operating the 

mobile GCS on the infantryman. The second problem is determining the transition point 

between the GCS and the handheld device. Operational constraints may not permit the 

operator of the mobile device to maintain close enough proximity to the transition point 

to prevent the UAV from experiencing loss link. The third problem is that placing a UAV 

operator in an infantry unit to operate the miniaturized mobile GCS has implications for 

force organization and training. 

To take the burden off of infantrymen and provide them with support, the 

researcher of this project pictured a flying communication topology that could relay 

communication and video while providing updates to the infantryman as they moved 

throughout the battle space. The researcher was introduced to the Field Information 

Support Tool (FIST), which is a web-based information-sharing portal that allows 

individuals to share information with a network using handheld devices (Dush, 2014).  

The concepts and technology surrounding the FIST lead to the search for research 

and technology that could facilitate the creation of a hotspot in the sky, or a consistent 

and secure multi-frequency communications platform that could locate in the sky within 

close proximity to maneuvering forces. The desired capability would communicate with 
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maneuver forces in non-mature communications environments to send voice and data 

communications through a UAV or networks of UAVs.  

Large UAVs have the organic capability to utilize satellite communications to 

maintain communication with maneuvering forces. Most STUASs however, lack that 

capability. The problem of LOS still plagues STUAS GCSs and AVs limiting the 

communications support from STUASs. STUAS AVs must stay in close proximity to the 

ground unit they desire to communicate with and the GCS to utilize the inherent mobile 

communication need to coordinate between a ground unit and a flying vehicle. How far 

away from their GCS could the ground unit be to accomplish the flying hotspot or 

airborne communication node concept that sparked this research? The only way to 

answer that question is to find technology that would support long distance hotspot like 

communication and put it in a STUAS and test the communications distance. The hotspot 

concept is not a restricting idea; it is one of several technological avenues to explore in 

creating wireless communication networks.  

Altitude, signal strength and distance are some of the most commonly known 

culprits for LOS complications, so LOS issues are always present. As new UAS systems 

are tested and researched an attempt must be made to defeat one of the three factors that 

cause LOS issues; the LOS issue provide the window of opportunity to test and evaluate 

swarm technologies’ potential answer to the LOS issue. In order to start answering the 

LOS question from a UAV perspective, first multiple AVs must be able to relay 

communications from ground units to other AVs, and then those AVs need the capability 

to relay that communications back to GCSs. AV networks must filter information 

transferred between AVs to determine if the AVs can chose the appropriate 

communications path ways to make the appropriate communications links between 

ground units, command and control nodes, and UAS operators. 

The final conceptual piece was introduced in the form of swarming technology. 

The idea came with many what-ifs, but the general concept, aside from the security 

implications, is almost obvious. The questions that must be answered to string a star-

shaped flying communications topology across 250 nm to the infantryman are locked 

inside the application of swarming UAV technology. Due to endurance limitations and 
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LOS limitations, STUAS at first glance are prime candidates for the employment and 

advancements on the horizon of swarming technology. The questions that must be asked 

about the use of swarm technology are as follows:  

1. Can UAVs participating in a swarm and share information? 

2. Can UAVs participating in a swarm leave and join the swarm based on 
mission requirements?  

3. Can UAVs retransmit controlling signals to each other to extend GCS 
range?  

4. Can UAVs retransmit voice communication and video, and if so, what are 
the requirements to upgrade or purchase that capability for the STUAS 
fleet? 

5. What is the cost estimate for swarming technology in a new UAS?  

The Literature Review chapter sheds light onto most of the questions introduced 

in this section.  

D. THESIS OVERVIEW  

The introduction provides the problem statement, background, and motivation 

surrounding the necessity to better manage the support provided by UAS in a fiscally 

constrained environment. The specific lens through which this thesis explores the value 

of swarm technologies to the STUAS programs is through the eye of cost estimation. To 

provide additional information on the baseline idea and determine if swarm technology 

can add value to future UAS programs, comparisons must be made to connect current 

UAS programs with the idea of future swarm capable UAVs. Furthermore to judge if 

value is added, swarm technology must demonstrate the potential to increase STUAS 

programs capabilities and close the gap between the capabilities of small and large UASs. 

By surpassing or mirroring small UAS and reaching or closing the capability gap 

between large UASs a small UASs swarm may increase values to STUAS program. Once 

a link is established between swarm technologies, small UASs and large UASs, a cost 

estimation will provide the final comparison. This line of reasoning will add to the 

overall discussion of swarm technology and take a small step in advancing STUAS 

acquisition programs. Within this thesis several questions are addressed surrounding the 
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feasibility of swarming technology as a communications vehicle, and the technologies 

potential value added to the STUAS programs. 

Chapter II, Literature Review, is focused on identifying technologies that make 

swarming UAV technology possible and potential requirements for upgrades or 

capabilities in future STUAS programs to support UAV swarming capabilities. 

The methodology chapter (Chapter III) outlines the cost estimation analysis, 

ground rules, and assumptions applied to analyze the physical and performance metrics 

used for the analogist and parametric cost estimation models. 

Chapter IV provides a knowledge base for the UAVs in the STUAS programs and 

the types of networks discussed in this thesis. This chapter provides the reader with 

information on missions and capability to follow the comparisons between, STUASs, 

large UASs, and swarm technological future capabilities requirements.  

Chapter V, Swarm UAV Perspective Missions, addresses the question of what 

type of missions and capabilities swarm UAS must have to add value to future STUAS 

acquisitions, and how close swarming concepts or technology is to providing capabilities 

similar to larger UASs. Future STUASs will need new requirements or another system 

added to the STUAS program if swarm technology is going to be capable of adding 

value.  

Cost estimation and analysis are applied and reviewed in Chapter V according to 

the methodology set presented in Chapter III. The analogist and parametric models are 

based on historical, physical, and performance data to determine the best model, and to 

provide the best cost estimation based on the data collected. 

Finally, the conclusion, Chapter VI, presents the cost estimation and the best 

models, and acknowledges the limitations of the models and process used. The 

conclusion closes with recommendations for future studies. 
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II. LITERATURE REVIEW 

A. NETWORKS 

When researching UAV swarm technology, it is essential to address the topic of 

networking. Networks or networking allows multiple computers to work together for the 

purpose of communication exchange, information exchange, or the mutually support of a 

mission. UAVs can use similar network concepts to emulate the benefits computers gain 

from networking. Several authors have researched the topic of communication exchange 

between UAVs and UGVs. Kyungnho’s (2013) research offers an example of a 

simulation used to test several algorithms. The algorithms were focused on mitigating 

mid-air collisions (MACs) between UAVs operating in airspace within close proximity to 

each other. Kyungnho’s research demonstrates the results of several UAVs that 

successfully utilizing a mathematical model that can coordinate path following in UAVs. 

This model required the use of a wireless local area network (WLAN) to communicate 

information between UAVs. 

Based on the simulation tests the UAVs were able to utilize the path generating 

algorithms to follow a set path, and generate a trajectory to avoid MACs (Kyungnho, 

2013, pp. 10–20). The algorithm takes into account mission specific data and out puts a 

flight pattern for the UAVs to follow. Kyungnho (2013) explained the algorithm as 

follows.  

The path-generation algorithm generates a required path based on mission 
specifications that include the objectives to be achieved, the constraints 
(tactical and environment) and limitations imposed by the flight dynamics 
and onboard mission payload sensors. After generating a 3D flight path 
that accounts for mission objectives and satisfies mission and airspace 
constraints, the path-following capability allows a vehicle to follow a 
predefined path (p. 9).  

The concept of pre-programming a UAV with a flight path before the start of the 

mission is not a new concept. However, Kyungnho’s (2013) MAC avoidance research 

and in-flight communications between UAVs are essential. UAVs ability to react to 

geospatial information, which is based on algorithms, is an important aspect in 
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identifying the existing capabilities, requirements, and technology for the advancements 

for swarm information exchange. Kyungnho (2013) also suggested that UAVs should 

have the ability to act autonomously and in concert to avoid MACs (p. 18). Kyungnho’s 

work with algorithms supports the concept of a single UAV joining a UAV swarm and 

then departing the swarm as mission requirements may dictate. 

What constitutes a swarm of UAVs?  Is it several UAVs working in concert, 

UAVs with the ability to operate autonomously after they pass through air corridors, 

UAVs avoiding MACs?  These questions help us determine what aspects of natural 

swarms we can or want to duplicate in a UAV swarm. Birds and flying insects rarely fly 

into each other, if ever. Why, because birds and insects have a presence of being 

instinctive to animals that swarm, therefore UAV must have a variation of MAC 

avoidance in their programming to duplicate the natural swarm ability. Another similarity 

in natural swarms that should be duplicated is division of labor between swarm members. 

The division of labor allows swarm members to serve the swarm in different functions. 

Some swarm members have wings and can fly while others crawl along the ground. 

Some swarm members collect the location of food while others stand ready to defend the 

swarm. The additions of new UVs to include unmanned ground vehicle (UGV), 

unmanned maritime vehicle (UMV), submerged unmanned vehicles and the variation of 

UAVs holds future possibility to connect these systems in a combined swarm.  

This concept of air and ground UVs communicating with each other is directly 

derived from the interaction of ants with wings and ants without wings. Phang (2006) 

looked at GVs and UAVs working in support of convoy security and force protection. 

Phang (2006) explored a simulation model that allowed the UAV to interact with a UGV. 

The UGV was able to coordinate the distance a UAV flew from the UGV to maintain 

close proximity and carry out the assigned mission. The intent of the coordination was to 

pass along information in the form of optical data that could prevent the UGV from 

traveling into an ambush or other obstructions capable of hampering the UGV’s mission 

(Phang, 2006). The simulations presented research that furthered the applications for 

interaction between unmanned air and ground vehicle. The interaction allows the GV to 

report Global Positioning System (GPS) information and to adjust mission characteristics 
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based on environmental conditions or mission centric tactical changes. Increasing the 

amount of GVs and AVs on the ground acting in concert with each other, furthers the 

concept of swarm interaction. Swarm UAV interaction or at least multiple UAV 

communication may require wireless Wi-Fi communications. 

One year after Phang’s work, Mahmood (2007) established criteria for the design 

of a modem to support communication using UAVs. Mahmood’s (2007) network 

operated a modem with his programming; he limited the design to account for cost, data 

rate transfer, simplicity of design, latency, and power consumption (2007). Mahmood 

used COTS equipment to minimize his cost and to emphasize the feasibility of his 

research for organizations with monetary constraints. Mahmood designed transmitters 

and receiver to support his network’s low cost COTS equipment. The network was able 

to transmit radio frequencies (RF) and digital signals from a distance of 10 km to 100 m 

with a data rate modulate able range from 62 kbits to 744 kbits (Mahmood, 2007). 

Mahmood created a communication network designed with over-the-counter technology, 

supporting over-the-counter recreational UAVs that transmitted RF and digital signals up 

to 10 km or five nm.  

B. MOBILE DEVICES AND UAVS 

The Field Information Support Tool (FIST) provides a look into shared 

communications across multiple platforms and devices with the ability to filter and 

categorize incoming information as it is uploaded to the web portal. The web portal has 

the ability to apply restrictions and permissions to the users based on predetermined 

access and need-to-know parameters. The web portal also supports uploaded information 

from mobile devices, such as cameras, laptops, and cell phones. Information can be 

uploaded to the web portal from any device with permissions to access the web portal. 

UAV images and/or video can transmit to the web portal (Longley, 2010).  

The FIST allows for continuous push and pull of communications from portal 

participates and has already been used for multiple missions, including: humanitarian 

missions, disaster relief, civil unrest environments, virus outbreaks, and intelligence 

gathering (Longley, 2010). The ability to utilize a similar communications structure 
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between UAVs and UASs’ participating in a swarm in some capacity is consistent with 

the idea of swarm technology. 

C. SWARMING UAV TECHNOLOGY 

The characteristics that define swarming technology need some explanation. 

Frantz (2005) established some guidelines that can improve understanding of the term 

swarm for this thesis and the technology. Frantz (2005) conducted simulations to test two 

algorithms (genetic and evolutionary) used to give the UAV swarm a pattern of behavior 

similar to the behavior associated with birds and insect swarms. According to Frantz 

(2005), “A swarm is a group of simple individuals that display characteristics such as 

decentralization, no synchronization, and communication amongst the group. A swarm is 

capable of self-organizing and completing tasks as a unit” (p. 21). Frantz’s characteristics 

of a swarm are used as a starting point. From the starting point provide by Frantz on 

swarm behavior, one must also determine a swarm’s ability to gather resources, attack 

aggressors, defend against dangers in the physical environment, and the communications 

vehicle for swarm integrity and information transfer.  

Frantz (2005) applied the genetic and evolutionary algorithm to govern the 

behavior of the swarm while conducting a search mission or locating and attacking a 

target. Frantz’s (2005) orthodox method of perceiving swarm behavior was reinforced by 

the behavior of ants and bees during their search for resources and while defending and 

attacking a threat.  

Dono (2012) also looked at swarm technology using simulations focusing on the 

complication of takeoff and landing for UAV swarms. Dono’s work simulates 

communication between swarm UAVs and it addresses the movement of a swarm of 

UAVs in positive controlled airspace, which is radar controlled airspace. The Federal 

Aviation Administration (FAA) is an example of an organization that controls airspace 

using radars. Swarm UAVs will undoubtedly come into contact with some sort of 

airspace controlling agency just as singular UAVs have. Swarming UAVs will interact 

with several different organizations as they operate over ground space and in airspace. 

Dono’s work points out the eventuality and necessity for swarm UAVs communicate 
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with outside agencies and for future development of swarm landing patterns or 

regulations. Outside of landing take off swarm UAVs may fly over cities. 

Several researchers experimented with employing UAVs in a civilian urban 

environment. Daniel, Rhode, and Wietfeld’s (2010) work suggests several agencies that a 

UAV network may provide value for like the police or firefighters. The types of UAVs, 

networks and communications those agencies might afford, are similar in scope to the 

UAVs, networks and communications in this thesis. Inside a urban environment UAVs 

have the potential to add value to police departments, fire stations, and homeland security 

operations using wireless mesh networks, connected to micro or small UAVs acting as 

sensors in concert with ground sensors to provide a mobile sensor network. (Daniel et al., 

2010, pp. 179–183). Daniel et al. (2010) specifically mentions the use of swarm UAVs in 

a chemical biological radiological nuclear (CBRN) environment where the UAVs are 

able to attach CBRN equipment or air collections equipment to determine contamination 

or the presences of CBRN environment (Daniel et al., 2010, p. 181).  

D. SUMMARY 

The technology reviewed in this chapter highlights the following capabilities 

required to support AV swarm technology:  

 Swarm UV will require programming algorithms to control autonomous or 
semiautonomous swarm activity using a variation of genetic, evolutionary, 
path generating algorithms or a variation on consistent GPS proximity 
interaction for autonomous or semiautonomous swarm control.  

 A swarm can be autonomous or semiautonomous with a GCS that is 
flexible enough to be mobile or stationary and receive and share 
information similar to the FIST technology with application that allow for 
filtering and access restriction of information collected by the swarm of 
UVs.  

 Network interaction within a swarm is wireless, using either radio 
frequency (RF) or Wi-Fi signals. Technology supports communication and 
data transfers between AVs of simple construction with COTS 
communication equipment. The swarm network requires communication 
inside the swarm between UAVs and outside the swarm to GCSs, other 
aircraft, and airspace control agencies.  
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 Swarm technology is not limited to just AVs, other UVs can participate in 
AV swarm interaction including GVs. Submerged UVs and UMVs are 
also options to consider for induction or interaction in an AV swarm. The 
research and development required to move swarm technology forward is 
consistent with the types of research and development (R&D) highlighted 
to further UAS integration by the Navy’s unmanned aircraft systems 
integration lab (Naval Air Warfare Center Aircraft Division [NAWCAD], 
2012, p. 12).  
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III. METHODOLOGY 

A. INTRODUCTION 

The cost estimation of swarming UAV technology is patterned after the accepted 

practices associated with cost estimation guidelines established by the U. S. Government 

Accountability Office (GAO; 2009). The GAO’s 12 characteristics of a valid estimation 

provides a starting point to ground this cost estimation methodology. The characteristics 

directly applicable to the cost estimation scope of this thesis are described in the next 

paragraph. 

Identifying a clear task which is essential for pointed and useful cost estimation 

generally falls to an agent of the government. As this cost estimation is of an academic 

nature, the clear task is tied to the application of an analogist and parametric model of 

cost estimation. The intention is to draw conclusions to disregard or support assumptions 

based on the correlation of price to several technical aspects of a UAS or AV. Due to the 

limitations of this academic work and curriculum requirements, the participants of this 

cost estimation are limited to one. However, several individuals participated in the 

validation of the methods used, as is standard practice within the academic community. 

Furthermore, multiple usable data collection sources were used to collect data and 

information from program, technical, and cost data, sources including: GAO reports, 

DOD acquisition reports, DOD UAS focused manuals, and manufacturer websites. An 

assumption was made that programs acquisition documents associated with the UASs 

reviewed in this thesis accurately predicted the work breakdown structure, which is 

incorporated in the program, technical, and cost data sources used for analysis models. 

However, several sources used different fiscal years (FY) to record dollars; therefore, it is 

necessary to adhere to generally accepted normalization methods to inflate or deflate 

fiscal year (FY) dollars as needed. The cost estimation methodology used throughout this 

thesis adhered to the GAO’s (2009) characteristics, when feasible for this work (p. 6). 
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B. GROUND RULES AND ASSUMPTIONS 

This cost estimation has historical information based on previous life cycle cost 

estimates (LCCEs) provided by the government. The LCCEs cover unmanned aerial 

systems and air vehicles on a per unit cost and per system cost program basis. The type of 

estimation performed here is a starting point to evaluate the capability requirement 

uncovered in Chapter II, Literature Review, for a UAS program infused with new 

technology. Based on the categories for cost estimations stated by the GAO, the cost 

estimation used in this research is an approximation of rough order of magnitude cost 

estimation (GAO, 2009, p. 35). Furthermore, ground rules are required to maintain a level 

of understanding for the context of this cost estimation (GAO, 2009, pp. 79–80). The 

ground rules and assumptions of this cost estimation are not officially sponsored by the 

government; however, they provide a structure for integrating the most useful 

information into this thesis project’s hypothesis and analysis. 

1. Ground Rules 

 Technology must exist to employ swarming UAV technology either 
through COTS equipment or through equipment currently present in the 
government’s inventory. Programs under review or in the R&D phase 
validate the usefulness of the rough order of magnitude cost estimation. 

 The cost estimate will provide an estimate for a new system cost, based on 
historical data. 

 Cost data must apply normalization to the FY dollars and state the base 
year. 

 Cost estimation methods used for the analysis are the analogist and 
parametric method. 

2. Assumptions 

 Weight is an analogist measurement for cost. 

 Maximum endurance is an analogist measurement for cost. 

 Takeoff weight is an analogist measurement for cost. 
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 Wingspan is an analogist measurement for cost. 

 Speed is an analogist measurement for cost. 

 Payload weight is an analogist measurement for cost. 

C. ANALOGIST METHOD 

The analogist method “subjectively compares the new system with one or more 

existing similar systems for which there is accurate cost and technical data” (D. 

Nussbaum, personal communication, June 20, 2014). A UAS with the ability to act as a 

swarm is the new system, which is defined in terms of design or physical parameters, 

performance characteristics, and known similar systems (D. Nussbaum, personal 

communication, June 20, 2014).  

The analogy data for swarming UAVs are based on four attributes. Figure 1 

depicts an example of how the analogist method is used to estimate cost. 

 

Figure 1.  Analogy cost estimation example (from D. Nussbaum, personal 
communication, June 20, 2014). 
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The analogist method provides a baseline analysis to narrow the prospective 

independent variables used in the parametric method. The benefits of an analogist method 

is that it “separates development and production estimates, each based on data related 

specifically to development and production” (D. Nussbaum, personal communication, 

June 20, 2014). The historical data collected for both development and production are 

then compared to the new system’s development and production information, a ratio is 

constructed, and the estimation of the future cost is generated (D. Nussbaum, personal 

communication, June 20, 2014).  

The formula for using the analogist method is essentially the following: 

 NP = SC × OP (1) 

Where NP = new program cost, SC = the scaling factor (new characteristic/old 

characteristic), and OP = the old program cost (D. Nussbaum, personal communication, 

June 20, 2014). 

D. PARAMETRIC METHOD 

The parametric method is a technique “sometimes known as the statistical 

method, that generates an estimate based on system performance of design 

characteristics. It uses multiple systems and makes statistical inferences about the cost 

estimating relationships” (D. Nussbaum, personal communication, June 20, 2014). 

The parametric method used here is restricted to a linear regression model with 

one dependent variable and one or more independent variables. This enables cost 

estimators to draw a cost estimate based on physical and performance characteristics (D. 

Nussbaum, personal communication, June 20, 2014). The parametric method draws a 

cost estimating relationship (CER) using observable cost drivers, based on historical data.  

The formula used to express the CER is shown in Equation 2. The formula depicts 

Y
i
 as the estimated cost, b

0 
as the Y intercept of the line, b

1 
as the slope of the regression 

line, X
i
 as the independent variable, and Ɛ

i
 as the unknown random error term for the 

regression (D. Nussbaum, personal communication, June 20, 2014). 
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  Y
i
= b

0
 + b

1
X
i
 + Ɛ

I (2) 

Figure 2 is a flow chart that explains the rationale behind developing a linear regression 

model, selecting dependent variables, normalizing the data, analyzing the outcome, and 

drawing a conclusion.  

 

Figure 2.  How to Develop a Parametric CER Selecting a Regression Model 
(from D. Nussbaum, personal communication, June 20, 2014).  

The process of testing the relationships between the dependent variable of cost 

and the independent variables of physical and performance characteristics requires the 

selection of the best set of CERs. Testing a hypothesis surrounding a specific variable is 

accomplished through the use of statistics. To draw a conclusion about a specific 

relationship of a single dependent variable on an independent variable, a hypothesis must 

be tested and evaluated for significance and statistical relationships. The statistics 

markers that can help determine significance and relationships while employing single or 

multiple regression models are R2 values, t statistics, F statistics, and the best p values 

(Wooldridge, 2009). 
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CERs are evaluated and used in cost estimation to determine the best model to 

use, which provides the best defendable statistical analysis given the historical 

information used to model physical and performance characteristics that affect cost. 

The steps to determining which regression model to select as the preferred model for 

future cost estimation are as follows:  

1. First Conditions  

 Does the model pass the common sense test; does the regression line 
demonstrate the expected decrease or increase of cost based on the 
characteristics of the dependent variable or variables? 

 Is the F- statistic’s significance below the accepted percentage, 20 percent 
for this thesis? 

 Is the t- statistic’s significance (determined by the p- value) below the 
accepted percentage, 20 percent for this thesis? 

2. Second Conditions 

 Determine which regression model has the highest R2; the regression 
model with the highest R2 is the best choice. 

 Evaluate the standard error between the remaining regression models; the 
model with the lowest standard error is the best selection for the cost 
estimation. 

 Compute the coefficient of variation for each regression model to 
determine which model has the lowest variation (D. Nussbaum, personal 
communication, June 20, 2014). 
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IV. UAV AND NETWORK OVERVIEW 

A. UAVS 

Throughout this thesis, a line is drawn between small and large UAVs and the 

criteria used to make that distinction. This chapter outlines the two categories and 

provides photographs and informational tables to help further alleviate confusion between 

the two types of UAVs.  

1. Small Tactical UAVs 

This section provides a list of the small tactical unmanned aerial systems 

(STUASs) their capabilities, and the missions these UASs were designed to function in. 

Specific AVs highlighted in this thesis were identified in the FY 2012 budget as some of 

the primary weapon systems for current wars during that period (DOD, 2012, p. 9). 

Several other UASs were added to the thesis to increase the pool of UASs for the 

analytical portion of the thesis. The Wasp III, RQ-11 Raven and the RQ-20 Puma, are 

identified as small unit remote scouting systems (SURSSs). RQ-7B Shadow and RQ-21A 

Blackjack are identified as tactical unmanned aerial systems (TUASs). On average, 

STUASs do not possess the sufficient airborne loiter time or substantial onboard 

technology required to operate BLOS or OTH. Chapter I made mention of a distinction 

between SURSSs, TUASs and STUASs, that distinction is predominately related to size 

and an increased loiter time from 45 minutes to six or nine hours of airborne time for the 

TUAS. The RQ-7B Shadow and the RQ-21 Blackjack fall into this category. The RQ-21 

Blackjack is also referred to as the RQ-21 STUAS, which may also cause some 

confusion. Throughout this thesis STUAS will referrer to SURSS, TUAS, RQ-21 

Blackjack and all other UAVs located under the Small Tactical UAVs section in this 

chapter.  

a. Wasp III  

The mission set for the Wasp III UAS is to support squad and platoon sized 

reconnaissance and surveillance as an organic piece of gear assigned to that unit, similar 
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to a radio or rifle. The environments the Wasp III is expected to operate in are “Advanced 

Reconnaissance and Light Infantry Military Operations on Urban Terrain (MOUT)” 

(“AeroVironment,” 2014b). Per the manufacturer, the Wasp III’s distinctive 

characteristics are the following: small size, durability for land or sea operations, 

autonomous flight and navigation, GPS, altimeter, flight range from GCS of 5 km line-of-

sight, 45 minutes of endurance, 40–65 km/h speed, 2.375 ft. wing span, 1.25 ft. (38 cm) 

length, 0.95 lb/430 g weight (land; “AeroVironment,” (b) .2014). The aerial 

characteristics for the Wasp III are as follows: hand launched, lands horizontally, has an 

operating altitude of 50–1,000 ft. above ground level (AGL), and 15–300 m AGL 

operating distance, and it uses the same GCS as the RQ-11 Raven and RQ-20 Puma 

(“AeroVironment,” 2014b).  

Payloads characteristics consist of an integrated forward and side look EO 

cameras, with the ability to swap out a high resolution EO camera with an electronic 

pan/tilt/zoom, and an infrared (IR) imager. This system is man-packable to support foot 

mobile units. Figures 3 and 4 are two variations of the Wasp AV—Figure 3 is a Wasp III, 

and Figure 4 is a Wasp AE. 

 

Figure 3.  Version of the Wasp, the Wasp III (from AeroVironment, 2014b). 
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Figure 4.  Another Variant of the Wasp, the Wasp AE 
(from AeroVironment, 2014a). 

b. RQ-11 Raven 

The RQ-11 Raven runs on battery power using a single charge or rechargeable 

lithium battery. The AV is hand launched and recovered on its belly after it lands. In 

optimal conditions, the AV will belly land on a level grass or dirt surface. Optimal 

operational employment requires a crew of two. “The operator can launch and recover an 

UA in minutes from an unprepared terrain without special equipment. It can be either 

remotely controlled from the GCU or fly completely autonomous missions using GPS 

waypoint navigation” (DOA, 2006a, p. 2–10). This system is also man-packable. 

However, High Mobility Multipurpose Wheeled Vehicle support may be required for 

optimal combat space allocation. 

The RQ-11 Raven can also support a payload with an electro-optical (EO)/IR 

sensor. The specifications and characteristics mentioned already in this section, 

operations of a Raven were acquired from the DOA’s UAS operations manual (2006a, 

pp. 2–10–2-13). Figures 5 and 6 are variations of the Raven, and Table 1 is an easy 

reference able table of the technical specifications of the Raven.  

 

Figure 5.  One example of a variant of the Raven 
(from AeroVironment, 2014d). 



 

 24

 

Figure 6.  Example of another variant of Raven 
(from AeroVironment, 2014d). 

 

Table 1.   Raven specifications (from DOA, 2006a, p. 2–10). 

c. RQ-7B Shadow 

The RQ-7B Shadow has a 50 km range limited by its LOS to a single GCS. The 

airspeed is broken into three categories: loiter (60 knots), cruise (70 knots), and dash (105 

knots). The airborne endurance is five hours, with a hydraulic rail launch system 

requiring 30 ft., and an arrested landing system requiring 200 ft. Current versions of the 

RQ-7B Shadow carry one payload capable of EO/IR sensors and laser designation. RQ-

7B has three interfaces: a video receiver, a primary transceiver, and a secondary 

transceiver. The system is self-contained and is transported by aircraft or vehicle and 

trailer (DOA, 2006a, pp. 2–6–2-10). Figure 7 and Table 2 are the visual aids for the 

Shadow UAV. 
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Figure 7.  Example of the Shadow’s (from sUAS News, 11 April, 2012). 

 

Table 2.   Shadow technical specifications (from DOA, 2006a, p. 2–8). 

d. RQ-20 Puma 

The Puma AE is13.5-pounds, fully waterproof, hand-launched, man-portable and 

can be assembled in minutes. The Puma AE can be operated and recovered on sea or land 

by a team of two people. It requires no infrastructure, such as runways, launch pads, or 

recovery devices. In addition, the system is quiet and operates autonomously, providing 

persistent observation data (AeroVironment, 2014c). The Puma is in a phased upgrade 

process which will provide extended battery life, additional payload bays, more accurate 

navigation and GPS capability (see Figures 8 and 9).  

  

Figure 8.  Puma operations at sea (from AeroVironment, 2014c). 
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Figure 9.  Physical and Performance specifications of the Puma 
(from AeroVironment, 2014c). 

e. RQ-21A Blackjack 

According to Naval Air Systems Command (2014) and the United States Marine 

Corps’ (2014) Command Element Roadmap, the RQ-21A Blackjack expands upon the 

capabilities provided by other STUASs in duration, payload, and communications 

capability. The increased capability allows the RQ-21A to operate from land or 

amphibious ship, provide night and day reconnaissance, surveillance and target 

acquisition, video sensors, laser range finders, and communications relay for UHF and 

VHF (FM). The system is self-contained and is transported by trailers and HMMWVs. 

The RQ-21A Blackjack STUAS capitalized on new technology to provide the RQ-

21A with significant technical characteristics; the RQ-21A Blackjack has the ability to 

communicate using an onboard Ethernet TCP/IP with data encryption capability, it 

provides up to 350 watts for payloads and is designed to accept multi-role payloads. The 

manufacturer reports 16 hours endurance with a ceiling greater than 19,500 ft. and a 

cruise speed of 60 knots and a top speed over 90 knots. Figure 10 is a photograph of the 

RQ-21A and Figure 11 outlines the specifications of the AV. 
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Figure 10.  RQ-21A Blackjack in flight (from INSITU, 2014). 

 

Figure 11.  Physical and performance specifications of the RQ-21 
(from INSITU, 2014). 

f. K-MAX 

K-MAX UAS is capable of functioning as a traditional external lift cargo 

transportation helicopter with a human pilot in cockpit or as an unmanned transport cargo 

helicopter. Figure 12 shows the external lift nature of the K-MAX, and Figure 13 displays 

the characteristics and technical specifications of the K-MAX UAS (Lockheed Martin, 

2010). 
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Figure 12.  Picture of K-MAX conducting external lift 
(from Lockheed Martin, 2010). 

 

Figure 13.   Physical and performance specifications of the K-MAX 
(from Lockheed Martin, 2010). 

2. Larger UAVs 

There are three UAVs that stand out in this chapter as large UAVs: the, MQ-1, 

MQ-9 and the RQ-4A. These large UAVs out weight the nearest small UAV by 500  kilo 

grams. The large UAVs can remain airborne well past nine hours with a speed that 

exceeds 100 knots.  
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a. MQ-1 Predator and MQ-9 Reaper 

The MQ-1 Predator is smaller than the MQ-9; however, the MQ-9 is an upgrade 

of technology used in the MQ-1. The MQ-9 upgrades are based on the MQ-1 successes 

and increased requirement for additional munitions delivery on the battlefield. The MQ-9 

has increased wing span, take-off weight, and bomb delivery capability. Both the 

Predator and the Reaper are 900 kilo grams heavier than the Shadow or the Blackjack. In 

the realm of capabilities the larger AVs have a distinct advantage in endurance, sensors, 

and weapons delivery capabilities. Figures 14 and Figure 15 show airborne pictures of the 

MQ-1 and MQ-9 UAVs respectively. See Tables 3 and 4 for the differences in 

performance between the two UAVs. 

 

Figure 14.  Airborne Predator (from General Atomics Aeronautical, 2014a) 

 

Table 3.   Performance Specifications for the MQ-1 Predator (from DOA, 
2006a, p. 3–6). 



 

 30

 

Figure 15.  Reaper is a step up in performance from the MQ-1 (from General 
Atomics Aeronautical, 2014b) 

 

Table 4.   Performance specification for the MQ-9 Reaper 
(from DOA, 2006a, p. 3–6). 

b. Global Hawk 

According to DOA (2006a), “The Global Hawk is the United States Air Force’s 

(USAF’s) first operational UAS in the high altitude, long endurance category. In January 

1997, the Global Hawk UAS was designated RQ-4A” (p. 3–4). The Global Hawk is the 

largest UAV covered in this thesis. Figure 16 is the RQ-4A variation on the UAS. The 

Navy also has a variant of the RQ-4A with a different name and designation. Table 5 

outlines the technical specifications of the RQ-4.  
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Figure 16.  Global Hawk (from Northrop Grumman, 2014). 

 

Table 5.   Performance and physical specifications of the Global Hawk 
(from DOA, 2006a, p. 3–4). 

B. NETWORK OVERVIEW 

Networks are vital to communications. Some networks use wires or fiber cables, 

while other networks are wireless. Network styles and their configurations are important 

to the sequence in which communication is passed through the network, the range of the 

network, and the redundancy of the network. 

1. Style Configuration 

The networks discussed in this section are adaptations of the networks used for 

computer networks. Star, ring, tree, and mesh are some of the most common designs used 

for network topology. When applying network topologies to swarm UAV communication 

and interaction, specific vocabulary is necessary. According to Cisco Systems, Inc., 

(2014), “The topology of a network is the arrangement or relationship of the network 
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devices and the interconnections between them” (pp. 420–422). The two terms that 

require specific definition are physical topology and logical topology. 

a. Physical Topology  

Physical topology, unlike logical topology, is strictly based on the appearance, 

and of physical location and shape of the network. The following definition expresses the 

concept. According to Cisco Systems, Inc. (2014), “Physical topology: Refers to the 

physical connections and identifies how end devices and infrastructure devices such as 

routers, switches, and wireless access points are interconnected. Physical topologies are 

usually point-to-point or star” (p. 421).  

b. Logical Topology  

The Logical topology or the process and sequence of communications is 

expressed in the following quote: 

Logical topology: Refers to the way a network transfers frames from one 
node to the next. This arrangement consists of virtual connections between 
the nodes of a network. These logical signal paths are defined by data link 
layer protocols. The logical topology of point-to-point links is relatively 
simple whereas shared media offers deterministic and nondeterministic 
media access control methods (Cisco Systems, Inc. 2014, pp. 420–422). 

c. Star 

The star network configuration shown in Figure 17 shows one UAV receiving 

information from all other surrounding UAVs. In this configuration, it is assumed that the 

UAV is either acting autonomously as a hub for information exchange for the five other 

UAVs, or that the center UAV is acting semi-autonomously, sending information back to 

a GCS or a command and control device or node.  



 

 33

 

Figure 17.  Star network configuration adapted for UAVs 
(from Cisco Systems, Inc. 2014, p. 421). 

d. Ring 

The ring configuration connects one AV to another AV through a point-to-point 

connection to another AV. The ring configuration is directly patterned off the concept of 

computer or device network configuration. Data and communication from the individual 

AVs follow the directions shown in the ring either clockwise or counter clockwise (Cisco 

Systems, Inc., 2014, p. 426). See Figure 18 for a graphic depiction of this configuration.   
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Figure 18.  Ring network configuration adapted network configuration adapted 
for UAVs (from Cisco Systems, Inc., 2014, p. 426). 

e. Tree 

The tree topology is similar to a star topology with an additional AV connected to 

the network. When GCS or mobile devices are applied to the WAN network topology 

connecting the swarm, all the topologies with the exception of the mesh topology may 

resemble a tree topology (see Figure 19).  
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Figure 19.  Tree network configuration adapted network configuration adapted 
for UAVs (from University of Florida, 2013, ch. 5) 

f. Mesh 

Looking at Figure 21, it is realistic to assume that each AV in the network is 

communicating with every other AV in the network. The following description expresses 

this concept precisely with computers as the network’s focus:  

Mesh: Topology provides high availability but requires that every end 
system be interconnected to every other system. Therefore, the 
administrative and physical costs can be significant. Each link is 
essentially a point-to-point link to the other node. Variations of this 
topology include a partial mesh, where some but not all end devices are 
interconnected. (Cisco Systems, Inc. 2014, p. 422). 
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Figure 20.  Mesh for UAVs (Cisco Systems, Inc. 2014, p. 422). 

C. SUMMARY 

UAVs come with many different capabilities and in all sizes. This chapter has 

provided visual references to help readers see the differences in sizes between the small 

UAVs and large UAVs. The physical and performance specifications listed in the tables 

allow for comparisons among the different characteristics associated with the UAVs 

presented in this chapter. The UAVs selected here are or have been tested and employed 

by one or more branches of the Armed Services. Speed, weight, and endurance are 

specific characteristics in that can affect UAV mission support. UAVs are designed to 

carry out specific missions. 

Weight is tied to the overall size of the UAV and the type of payloads and 

ordnance UAVs can carry. Based on the visual aids and the performance information 

provided in the tables, a general assumption can be made. Heavier UAVs are associated 

with a longer endurance time and a faster speed. Larger, more powerful engines mean 

more speed. Weight and speed are trade-offs—a larger payload requires a stronger engine 

or larger engine to maintain a set speed requirement. Sensory, communications, onboard 

processing speed, and ordnance are all capabilities that are balanced by the mission 

requirements each individual UAV is designed to fill. Up to this point in time, UASs 

have not been designed to allow the smaller UAVs to communicate with each other, or to 

perform some of the required characteristics that constitute swarm behavior.  
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The Network Overview section discussed different types of networks that have 

the ability to communicate and organize the communication process in the network. 

Chapter II highlighted several experiments with COST equipment that demonstrated the 

ability of UAVs to function utilizing network concepts. The limitations of LOS and 

BLOS uplinks and downlinks for small UAVs have created an opportunity for physical 

topology if applied to UAVs to create an option to lower the LOS issues that small UAVs 

have. If those same UAVs are acting in swarm— with the ability to test signal strength to 

determine the best path of communication through the network, to report their locations, 

and to self-organize—extending communications through a network may be possible. 

The LOS and BLOS limitations mentioned in previous chapters necessitated hub-and-

spoke operations to facilitate extended UAV operational range. Using the physical 

topologies as a guide, instead of a ground team, replace that team with another UAV that 

can pass on GCS controls, communications, in a semi-autonomous mode, or pass on 

GPS, and mission confirmation and pattern generation information in an autonomous 

mode. 
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V. SWARM UAV PERSPECTIVE MISSIONS 

Swarm technology can benefit military and civil missions in a multitude of ways. 

One report from the GAO (2008) outlined several missions that a UAS can fulfill, those 

missions are: communications relay, disaster recovery communications relay, maritime 

border protection, law and treaty enforcement, climate change observations, search, real-

estate photography, pipeline survey, and infrastructure survey (pp 6–14,). The criteria 

applied in this chapter presents the idea that if one UAS can conduct the mission then that 

missions must be considered as a future swarm UAV mission. At this point in the 

development of swarm technology the appraisals between UAV and swarm UAV benefit 

is qualitative because of the lack of UAV swarms in operations. Therefore, the collection 

of perspective swarm missions presented in this chapter are a frame work for future 

testing of swarm technology benefit to UAS operations.  

UASs are built to carry out specific mission requirements based on specific 

capability requirements. This chapter lays some of the groundwork capabilities and 

missions for future UAS swarm mission requirements, and by default those mission 

specific capabilities. The information in Figures 26–37 in the appendix and in Chapter IV 

contain a list of the different missions larger UAVs carry out. Large UAVs’ payload size, 

weapons, and sensors, provide a level of support that current smaller UAVs are unable or 

hard-pressed to duplicate.  

The difference in mission and capability between large UAVs and small UAVs is 

simply a result of different requirements used to acquire the desired capabilities. This 

thesis presents several requirements that are necessary to allow swarm UAVs to operate 

in mission sets comparable to larger UAVs, and also presents requirements to increase 

the capability of small UAVs through their participation in a UAV swarm. The resulting 

missions and outlined requirements applied together will add value to organizations with 

fleets of small UAVs. 

The next section (Large UAV missions) lists the characteristics of large UAVs 

which are currently limited or non-existent on small UAVs. 
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A. LARGE UAV MISSIONS 

Large UAV’s current signature missions are strike, communication node, and 

persistent long term Intelligence reconnaissance and surveillance (ISR). Strike capability 

requires the ability to transport ordnance for delivery on the battlefield. Acting as a 

communication node often requires satellite communication capability to deal with LOS 

issue. Long term persistent ISR is centered on the endurance time an AV can stay on one 

target and observer and collect ISR data (DOA, 2006 pp 2–6─3-10). Strike, acting as a 

communication node and ISR are both missions and capabilities. The list has both 

missions and capabilities present.   

Small UAVs and large UAV share some missions and capacities, those overlap 

are generally in ISR and situation awareness. The intersection of UAV platforms at ISR 

and situation awareness missions suggests that at every level of UAV operations those 

missions remain important. Therefore, swarms UAVs are required to duplicate that 

capability to serve those two missions. Additional, some of the payload capabilities 

overlap as well, due to the types of sensor used for the payloads. The appendix, Chapter 

VI and (DOA, 2006a) provide a collection of small and large UAV missions and 

capabilities the summation of that information is as follow:  

 

1. Strike (mission & capability, MQ-1, MQ-9) 

2. Communication node (mission & capability, RQ-21A, MQ-1, MQ-9, RQ-
4A) 

3. Extended duration ten hours or longer airborne flight (capability, RQ-21A, 
MQ-1, MQ-9, RQ-4A) 

4. ISR (mission & capability, all UAVs) 

5. Targeting (capability, MQ-1, MQ-9, RQ-4A) 

6. Situation awareness (capability, all UAVs) 

7. Advance surface to air radar (capability, RQ-4) 

8. Battle management (mission and capability, RQ-4) 
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9. Automated identification system (AIS) (capability, 
RQ-21A, MQ-1, MQ-9, RQ-4A) (DOA, 2006a pp 2–6─3-10)   

The next section compares some of the capability differences between small and 

large UAVs based on the onboard or UAS specific technology.   

B. COMPARISONS 

Large UAVs have communication capability that can rely on satellite 

communication to diminish the LOS and BLOS issues that smaller UAVs have because 

of their RF communications capable technology. Large UAVs do have RF 

communications, however, the strength of the RF signal and the increased altitude that 

large UAVs can fly allows for large UAVs RF use to be less affected by the three major 

challenges to communication (signal stringy, LOS, altitude). This makes large UAVs 

more capable then small UAVs on a one to one comparison, however, this comparison 

sets the conditions for potential value added to small UAVs when acting in a swarm with 

an individual dispersion of 30 nm between UAVs. If, one small UAV can communicate 

at a limit of 50 nm or less than three swarm UAVs should operating as communication 

nodes can theoretical extend that distance to a maximum of 150 nm (based on the 

limitations of LOS of the RQ-7A Shadow) (DOA, 2006, p. 2–8).   

Next mission to be evaluated is the strike mission. A large UAV can carry several 

different ordnance loads an endurance of over nine hours. Small UAVs like the RQ-21A 

have and endurance of 16 hours, without ordnance (“INSITU.” (2014). AeroVironment 

website has an example of a small UAV with minimum endurance time with strike 

capability (switchblade UAV) (“AeroVironment,” (e). 2014). The ordnance sizes are not 

the same as the large UAVs and the endurance time of the small UAV is substantial less 

than nine hours. However, there is a small UAV with limited amount of capability with 

the same mission. For this reason swarm UAVs are required to have that capability. 

AIS is the ability for other aircraft to identify the general location and friendly 

status of approaching aircraft. The RQ-21A has the ability to transmit AIS. Swarm UAVs 

require this capability to communicate the swarms location and status to friendly aircraft 

operating in the same airspace (“INSITU.” (2014).   To further the application of AIS 



 

 42

UAVs are required to have a MAC algorithm written to prevent the swarm from flying 

into other aircraft and swarm members. (adapted for swarm UAVs from Kyungnho 2013, 

p. 18).   

UAVs operated throughout the DOD are conducting individual operations outside 

of a swarm environment; restrictions should not be put in place to prevent a singular 

UAV from leaving a swarm of UAV to conduct individual operations. The flexibility is a 

requirement for swarm UAVs to prevent a loss in current flexibility in UAV operational 

environment. 

C. BENEFITS 

Applying the aspects of swarm activity seen in natural with insects can create a 

model for the variations of the UAVs employed in a swarm in the future.   

UAV swarm members can have primary and secondary missions similar to the mission 

that the small and large UAVs have now. Part of the swarm can have a primary mission 

of strike, act as communication nodes or, ISR. Swarm members with longer endurance 

time can performer the mission of battle management for the smaller UAVs.   Specific 

UAVs can act as command and control links to other swarms or ground control stations. 

Additionally, the capability to target and attack for a swarm attack or individual 

attack could apply for semi-autonomous or autonomous UAVs (adapted from Franz, 

2005, pp. 5–36).    Swarm UAV missions are as flexible and usable as the individual 

UAV counter parts. The addition of swarm capability creates a force multiplier for 

individual UAVs acting in concert with each other.   

D. SUMMARY 

Swarm UAVs can be designed to fill every mission current small UAVs are in 

support of. The GAO report out line several types of missions UAVs could support. 

Swarm UAVs can support those missions as well. In the large UAV section several 

missions where examined (strike, acting as communication nodes) other while other 

missions cross over between small and large UAV (ISR and situation awareness) all these 

mission are important to add to the requirements for future swarm UAV missions and 
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capabilities. Size matters, the bigger the UAV the more roles or the robust type of 

primary mission it can serve in a swarm. Just like in nature and as currently demonstrated 

by the differences in the current UAV fleets, some UAVs in a swarm can have a primary 

mission of strike while others have a primary mission of ISR and communication node 

with in the swarm construct (adaptation for swarms from Phang, 2006). 
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VI. COST ANALYSIS OF UAVS 

A. COLLECTED DATA 

The relevance of the data collected is determined by the data’s ability to adhere to 

the ground rules, assumptions, and conditions for the analysis of the data. 

1. Ground Rules 

The cost estimation of swarm technology must be within the required ground 

rules laid out in Chapter III, Methodology. In Chapter II, technology was identified that 

supports the creation and interaction of swarm technology applied to UASs. The 

technology to test UAS intercommunication and proximity avoidance is also available. 

Formation flying with the use of algorithms that support genetic, evolutionary, and 

pattern-generating software was created and tested in UAS swarm simulations. Data 

transfer and RF communications between UAVs and GCSs were conducted using COTS 

equipment. Lastly, wireless technology is available to utilize networks with the ability to 

link UAVs together while airborne. 

Budgetary information collected for this research came from FY2015. FY2015 

was used as the base year for the AV unit cost and per system total cost of nine UASs.  

2. Assumptions 

Chapter III provides a list of several assumptions used to determine the realistic 

application of the analogist method to the cost estimation of a new swarm AV. The first 

assumptions suggest that the weight of a single AV or UAS is a valid metric to estimate 

price for a new UAS or AV. Table 6 contains the data used to create Figure 21. Based on 

the data collected, the trend line in Figure 21 suggests an exponential relationship 

between weight and price.  

a. Weight Assumption 

The weight assumptions use all nine of the UAVs to make a realistic 

determination of the relevance of weight as a cost estimation variable. Based on Table 6 
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and Figure 21, it appears that there is a relationship between weight and price. Therefore, 

the assumption is a valid variable to conduct an analysis with.  

 

Table 6.   Data used to create Figure 21 

 

Figure 21.  This figure suggests an exponential relationship between weight 
and price, and it supports the assumption that weight is a valid 

characteristic for cost estimation of an AV. 
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b. Endurance Assumption 

Table 7 lists the data points collected and used for the graph in Figure 22 to 

determine whether there is a trend to suggest the characteristics of endurance as a 

reasonable indicator of estimating the cost of a new AV. 

 

Table 7.   Data from nine AVs used to generate Figure 22 

Figure 22 used all nine AVs in the data set. As a result of the data points, an 

exponential trend line was applied to the data points. The exponential trend line suggests 

that the endurance assumption is a valid characteristic to estimate the future cost of a 

newly developed AV. 
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Figure 22.  Endurance graph based on nine AVs with a trend line depicting 
exponential relationships between cost and endurance 

Table 8 lists the data points for the small UAV, which were used to create the 

small AV per AV graph (Figure 23). The Figure 23 trend line suggests an exponential 

relationship between endurance and price.  

 

Table 8.   Data Used to Create Figure 23 



 

 49

 

Figure 23.  Endurance with a linear trend line suggesting a linear relationship 
between cost and endurance for small AVs. 

c. Speed Assumption 

Speed assumption is the last of the three assumptions covered in this thesis. Other 

cost estimation analyses may utilize three of four other characteristics or more than three 

characteristics. This thesis looks at only three assumptions during the analysis. 

 

Table 9.   Data used to generate Figure 24 
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Data graphed in Figure 24 and Table 10 show a relationship between speed and 

cost. One relationship is exponential, and the other relationship is linear, as evidenced by 

the trend line in Figure 24. Based on Figure 24 and Table 10, the assumption to use speed 

as a cost estimation technical characteristic is reasonable.  

 

Figure 24.  Graph depicting an exponential relationship between cost and 
speed. 

 

Table 10.   Data used to generate Figure 25 
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Figure 25.  This graph applies a linear trend line to the data which suggest a 
linear relationship between cost and speed. 

B. ANALYSIS 

Weight, endurance, and speed are all acceptable variables with which to conduct 

an analysis, based on the relationships displayed in the tables and figures presented in this 

chapter up to this point. Those relationships suggest a linear and exponential relationship 

between the variables and price. 

1. Analogist 

The first model used in this research is the analogist model. It is used to analyze 

price and weight for nine UASs based on the first assumption listed in Chapter III. Figure 

25 presents the collection of data used to generate the analogist model. Table 11 presents 

the averages for the characteristics used in the model to present a rough starting point for 

a singular AV using all the AV data for the nine types of AVs—the small AVs and the 

large AVs. 
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Table 11.   UAS Information Collected for a Single AV 
(after Barr Group Aerospace, 2014).  

Based on the information collected in Figure 23, the average weight, speed, 

endurance, and AV per unit cost represents a rough estimate of the AV price for a single 

AV with swarm technology. Avg All AVs of $14.51 million is the rough estimate of one 

AV using all nine UAVs based on the information collected. This single AV average 

characteristics consist of 2248.03 kg, 139.89 knots speed, and 975.56 minutes of 

endurance. The rough characteristics of a single AV based on the small UAV information 

is 55.86 kg, 53.80 knot speed, 376 minutes of endurance, and a per unit cost of $0.48 

million dollars. The characteristics of a large AV are out of the focus for this thesis for 

adding benefit to the STUAS category of UAS (see Table 12).  

 

Table 12.   Average characteristics and price for a new AV with swarm 
technology. 

a. Weight Analogist Analysis 

Based on the formula for estimating new unit cost (see Figure 1 in Chapter III), 

the new system’s weight is divided by the old system’s weight, and the quotient of that 

function is multiplied by the old system’s per AV price to estimate the new unit cost. 

Table 13 displays the new unit prices for a new AV with a weight of 55.86 kg. Table 14 



 

 53

shows the same information for a new AV with a new weight of 2,889.27 kg, and for 

Table 15, the new weight is 4,988.25 kg. 

 

Table 13.   New weight for the new AV is 55.86 kg). 

Figure 24 shows the cost of AVs increasing as weight increases for small AVs, 

and the cost decreasing for large AVs as the weight variable decreases. The next two 

tables, Tables 14 and 15, show an increase in the weight variable for the new AV 

resulting in a drastic increase of price for the small AVs. Conversely, the large AVs’ cost 

decreases because of the decrease in the weight variable based on the increased 

numerator.  

 

Table 14.   New weight for the new AV is 2889.27 kg) 



 

 54

 

Table 15.   New weight for the new AV (4,988.25 kg) 

Tables 13, 14, and 15 supports the assumption that as weight increases, cost 

increases per AV, and as weight decreases, cost decreases per AV. Based on the data 

presented, the average weight of the small AVs, 55.86 kg, results in the lowest new 

swarm per AV cost. 

b. Endurance Analogist Analysis 

This section has three tables that apply the analogist analysis to the data 

collected—Tables 16, 17, and 18. Table 16 uses the average endurance of the smaller 

UAVs as the new system variable, while Tables 17 and 18 use all nine UAVs’ average 

endurance and the larger UAVs’ average endurance.  

 

Table 16.   Endurance Attribute based on the Average Endurance for the 
Small AVs 
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Table 17.   Endurance attribute based on the average endurance for all nine 
AVs. 

 

Table 18.   Endurance attribute based on the average endurance for the large 
AVs. 

The analysis for endurance has returned a per AV price that ranges from $0.33 

million to $83.672 million. The analogist model suggests that swarm UAVs are 

comparable to the cost of individual UAVS without the added technology. 

c. Speed Analogist Analysis 

Tables 19, 20, and 21 use the averages for speed for the small UAVs, all nine 

UAVs, and the large UAVS as the new system variable to model the future price of a 

swarm AV.  
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Table 19.   Speed attribute based on the average speed for the small AVs 

 

Table 20.   Speed attribute based on the average speed for all nine AVs 

 

Table 21.   Speed attribute based on the average speed of the large AVs 

2. Parametric  

The parametric approach requires cost estimating relationships (CERs) to be 

provided to create cost estimating variables. For this parametric analysis, weight, 

endurance, and speed are the cost drivers that were identified in the assumptions section 



 

 57

and tested in the analogist section to determine whether a relationship did exist. Weight, 

endurance, and speed are the CER variables that were used in this parametric approach.  

a. Linear Regression Model for Weight 

The linear regression model below was created using the data collected for nine 

AVs’ weights and prices. The model regression returns are found in Table 22–24. The 

results shown in Tables 22 and 23 pass the first conditions requiring an F-statistic and t-

test p-value of less than 20%.  

 

Table 22.   F-statistic value for weight is less than 20 percent. 

 

Table 23.   The p-value for the weight coefficient is less than 20 percent. 

The second condition requires a selection of the best model, which is the model 

with the highest R2 after the first condition is passed (see Table 24). In addition, the 

model with the lowest standard error represents the model with the lowest unexplained 

variables present in the model. 
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Table 24.   R2 value for weight is the highest in the weight model. 

b. Linear Regression Model for Endurance  

The endurance model in Table 25 passes the less-than-20 percent standard for the 

model’s F-statistic. However, Table 26 shows the t-test was a failure because the p-value 

for the model failed the less-than-20 percent criteria for acceptable models. 

 

Table 25.   F-statistic value is less than 20 percent. 

  

Table 26.   The t-test for the coefficient for the endurance independent 
variable fails the p-value test. 

The endurance model has the lowest R2 and the highest standard error for all three 

models (see Table 27). First conditions were not met for the endurance model because the 

p-value was high. If the data had resulted in the first conditions being met, the second 

conditions would still result in the endurance model being the worst case model for single 

independent variable models for cost estimation. 
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Table 27.   R2 for the endurance model has the lowest value 

c. Linear Regression Model for Speed 

The linear regression model’s output is represented in Tables 28, 29, and 30. The 

results of the model, based on the metric used to determine the acceptability of the model, 

show that the speed model passes the conditions laid out in the methodology chapter. The 

speed model is valid for cost estimation based on the thesis parameters.  

 

Table 28.   F-Statistic for the significance of the model is less than 20 percent. 

 

Table 29.   t-test based on the p-value for the coefficient is less than 20 
percent. 

  

Table 30.   The R2 term 76.39 percent. 
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d. Multi Linear Regression Models 

The multi linear regression model uses two or more of the independent variables 

to determine the best model for the estimation of a new swarm AV. The metric to 

determine the best model is outlined in Chapter III. The best model for the estimation is 

the model that passes the F-statistic, passes the t-test with a p-value of less than 20%, has 

the highest R2, and has the lowest standard error value.  

There were four models used to identify the best estimation model: weight and 

speed (Table 31); weight and endurance (Table 32); endurance and speed (Table 33); and 

weight, endurance, and speed (Table 34). All models passed the F-statistic test suggesting 

that the model is better than a general average (see Tables 31 and 32).  

 
ANOVA                

   df  SS  MS  F  Significance F 

Regression  2  3745.212674 1872.606337 12.228369 0.007645

Residual  6  918.817351 153.136225      

Total  8  4664.030025         

Table 31.   Weight and speed F-statistic test 

ANOVA                

   df  SS  MS  F  Significance F 

Regression  2  3968.528748 1984.264374 17.117993 0.003316

Residual  6  695.501277 115.916879      

Total  8  4664.030025         

 

Table 32.   Weight and endurance F-statistic test 

ANOVA                

   df  SS  MS  F  Significance F 

Regression  2  4045.704126 2022.852063 19.628989 0.002330

Residual  6  618.325899 103.054316      

Total  8  4664.030025         

Table 33.   Endurance and speed F-statistic test 
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ANOVA                

   df  SS  MS  F  Significance F 

Regression  3  4047.668106 1349.222702 10.945052 0.012306

Residual  5  616.361919 123.272384      

Total  8  4664.030025         

Table 34.   Weight, endurance, and speed F-statistic test 

While all four models passed the F-statistic test, only two models passed the t-

test, which required a p-value less than 20 percent. The two models that passed the t-test 

were weight and endurance and endurance and speed (see Tables 35 and 36). 

 

   Coefficients
Standard 
Error  t‐Stat  p‐Value 

Intercept  3.702165 5.935728 0.623709 0.555773 

Weight kg  0.009032 0.001800 5.018218 0.002408 

Endurance 
min  ‐0.009736 0.006801 ‐1.431545 0.202236 

Table 35.   Weight and endurance t-test with a p-value less than 20% 

   Coefficients
Standard 
Error  t‐Stat  p‐Value 

Intercept  ‐7.260797 5.742060 ‐1.264493 0.252950 

Speed knots  0.263767 0.048917 5.392078 0.001676 

Endurance min  ‐0.015508 0.007165 ‐2.164541 0.073614 

Table 36.   Endurance and speed t-test with a p-value less than 20% 

The final metrics used to determine which model to use to estimate the cost of a 

swarm UAV were the R2 value and the model with the lost error term. Tables 37 and 38 

show that the endurance and speed model is the best model to use given the data 

collected. 
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Regression 
Statistics    

Multiple R  0.922431

R Square  0.850880

Adjusted R 
Square  0.801173

Standard Error  10.766470

Observations  9.000000

 

Table 37.   Weight and endurance R2 is lower in this table than Table 38 and 
the standard error is higher. 

Regression 
Statistics    

Multiple R  0.931357

R Square  0.867427

Adjusted R 
Square  0.823236

Standard Error  10.151567

Observations  9.000000

Table 38.   Endurance and speed model is the best model to use based on the 
data and the metrics applied. 

e. The Price of a Swarm AV Based on the Models Used 

The average characteristic of a new swarm AV based on the data is as follows: 

weight consists of 2,248.03 kg, 139.89 knots speed, and 975.56 minutes of endurance. 

That size of AV is grossly larger than the largest of the small AVs. To a more realistic 

characteristic of weight to the analogist model the applied the average weight of the small 

AVs as a more realistic variable. The price based on weight for AVs ranges from $0.31 

million to $6.45 million. To increase the endurance of the AV based on the average of all 

nine AVs, the price ranges from $0.86 million to $47.3 million. However, when the 

average endurance of the small AVs was applied to the model, the price ranged from 

$0.33 million to $18.2 million. The final model determined the price of a swarm AV 

based on speed. That model returned a price between $0.39 and $31.5 million based on 

the highest cost estimate using all nine AVs’ speed average, and the lowest cost based on 

the small AVs’ speed average. 
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Using parametric-based models, the linear regression analysis points to the weight 

model as the best cost estimate tool to determine the cost of a new swarm AV. That 

formula is shown in Table 39 along with the price. The linear regression model suggests 

that as the weight of the AV decreases from the AV weight of the nine AVs in the data, 

the cost estimation for a swarm AV will decrease (see Table 39).  

 
Linear 

Regression 
Model  Future Weights (kg) Estimate 

Price per AV 
(Mil) 

Y =  Price (Mil)  2249  $14.515 

x =  Weight (kg)  1000  $5.514 

b =  Intercept  500  $1.911 

250  $0.109 

x =  0.00720634  125  ‐$0.791 

b = 
‐

1.692204735 75  ‐$1.152 

Y= b + x  Formula 

 

Table 39.   Multi Linear Regression Model using the average weight of the 
AVs suggesting a decrease in estimated cost based on weight 

The best multi linear regression model based on the data and the metrics applied is 

the endurance and speed model. That formula is shown in Table 40 along with the price.  

 
Multi Linear 
Regression Model    

Future Speed 
Estimates 

Future Endurance 
Estimates 

Price per AV 
(Mil) 

Y =  Price (Mil)  139.89 975.56 $21.509

x = 
Endurance 
(Min)  129 875  $20.196

x1 =  Speed knots  119 775  $19.109

b =  Intercept  109 675  $18.022

      99 575  $16.935

x =  ‐0.015508 89 475  $15.848

x1 =  0.263767         

b =  ‐0.260797         

Y= b + x+ x1  Formula          

Table 40.   Multi linear regression model starting with the average using all 
nine AVs then decreasing speed and endurance closer to the 

capabilities of the small AVs. 
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C. SUMMARY 

The analogist model provides a high and low price for a swarm AV based on how 

closely the swarm AVs are to the endurance and speed of the larger AVs, as well as the 

more realistic comparison and close of the swarm AVs to the smaller AVs. As the AVs 

move closer to the size and individual capabilities of the large AVs, the cost estimate is 

around $89 million. The estimate suggests that as the swarm AVs remain closer in 

weight, endurance, and speed to the smaller AVs, on average the price estimation is as 

low as $0.33 million. 

The single linear regression model and the multi linear regression model both 

suggest that the analogist price of $89 million for a new swarm AV is likely an extreme 

estimate of the cost of a new swarm AV. However, as multiple AVs are purchased for the 

new UAS swarm, the price will approach or exceed $89 million for the entire system and 

additional AVs. The multi linear regression model suggests that the price of 10 swarm 

AVs with a speed of 89 knots and 475 min of endurance is estimated to cost $158.48 

million, and the linear regression model suggests that 10 swarm AVs with a weight of 

250 kg is estimated to cost $1.09 million.  
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VII. CONCLUSION 

A. TECHNOLOGY REVIEWED  

The technology reviewed in Chapter II outlined some of the requirements needed 

to support AV swarm technology. New algorithms must be programmed for AVs to be 

controlled autonomously or semi-autonomously. Some of the new algorithms have been 

tested, and others already exist as part of landing sequences or in larger AVs. Swarm 

activities for UAVs are a variation of genetic, evolutionary, and path-generating 

algorithms which also require consistent GPS proximity interaction between swarm 

members in either an autonomous or semi-autonomous mode.  

Flexibility is another aspect that must be maintained as AVs interact with UAV 

swarms. There should be flexibility in the manner of control of an AV and a UAV 

swarm. Technology is available that allows GCSs or mobile devices to control semi-

autonomous AVs. This flexibility should remain to allow GCSs or mobile devices to 

receive and send communication or information to autonomous UAV swarms. FIST 

technology provides a framework to consider for future information collection and 

dispersion throughout a network, with the ability to filter and restrict access to 

information.  

Network interaction within a swarm is wireless by default, either using RF or Wi-

Fi signals. Technology supports communication and data transfers between AVs of 

simple construction with COTS communication equipment. The swarm network requires 

communication inside the swarm between UAVs and outside the swarm to GCSs, other 

aircraft, and airspace control agencies.  

Swarm technology is not limited to just AVs; there are a wealth of opportunities 

for subsurface, above ground, and above surface UVs to act in swarms. All UVs in a 

swarm do not need to be restricted to the same primary mission. Just like in nature, some 

members of the swarm are workers, gatherers, or fighters, while others relay messages. 

UAVs can have primary and secondary missions to perform while acting in a swarm. 
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B. METHODOLOGY REVIEWED 

The methodology used for this thesis project was based on an approximation of a 

rough order of magnitude cost estimation to determine the range of cost for a new UAV 

with swarm technology. Ground rules were set to cage the analysis. Technology does 

exist to employ swarm UAV technology, and experiments have been conducted using 

COTS equipment. The cost data collected was in FY2015 dollars, and the independent 

variables were normalized by a measurement of weight (kg), speed (knots), and 

endurance (min). Finally, four models were used to find a range for the future cost of the 

new swarm UAV. The average of all UAVs based on the characteristics was the initial 

model, followed by an analogist model and a parametric model consisting of both single 

linear regression and multi linear regression. 

The assumptions were tested to determine the reality of using weight, endurance, 

and speed. Ideally, more than three characteristics would be included in the model; 

however, time was a constraint for this rough estimate. 

C. UAVS AND NETWORKS  

Future swarm UAVs will be designed to carry out specific missions in a primary 

or secondary capacity. Those future missions will be affected by the design of the UAV 

based on performance and technical characteristics (such as speed, weight, and 

endurance). Sensory, communications, onboard processing speed, and ordnance are all 

capabilities that are balanced by the mission requirements for each individual UAV. 

When we add swarming capability as a flexibility to individual UAVs and not as a single 

mission capability, the potential for upgrading a current fleet of small UAVs is available, 

as well as the potential of building new UAVs with the ability to swarm or act 

individually.  

In order to organize a swarm, physical topology will be applied to a swarm. The 

names presented in this thesis were an adaptation of network topologies; however, there 

are now restrictions on the types of topologies that can be used to provide extend UAV 

service and communications and control.  
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Networks have the ability to test information flow, processing speed, and rate of 

data transfer. When those same abilities are considered for UAVs acting in a swarm, the 

potential exists for swarm UAVs to test signal strength to determine the best path of 

communication through the network, report their locations, and self-organize, extending 

communications through a network. The LOS and BLOS limitations mentioned in 

previous chapters required hub-and-spoke operations to facilitate extended UAV 

operational range. Using the physical topologies as a guide, instead of a ground team, 

replace that team with another UAV that can pass on GCS controls, communications, in a 

semi-autonomous mode, or pass on GPS, and mission conformation and pattern 

generation information in an autonomous mode. 

D. BOTTOM LINE 

Technological advances and research are pushing the application of unmanned 

vehicles in exciting directions. This thesis emphasis is on cost estimation for a new UAV 

with swarm applications. The new swarm UAV theoretical can be designed to emulate 

current UAS mission, and expand upon the communication relay mission. Small UAS 

have a line of sight capability limitation that leaves room for improvement by capitalizing 

on future technology. The UAVs organic to the Marine Corps (USMC) are the primary 

focus for this analysis because organic USMC UAVs are habitually small UAVs. The 

analysis determined a rough cost estimation range for a future AV with new technology. 

Chapter II presents research to support the validity of swarm technology and 

communications through a network of UAVs. Chapter III outlines the analogist and 

parametric models used during the rough cost estimation. The analysis conducted 

suggests that a swarm UAV is comparable in cost to legacy UAVs currently in service in 

the USMC. 

The Center for New American Security put several recommendations to the DOD 

and its services regarding swarm technology: 

 Recommendation to the Office of the Secretary of Defense by Paul 
Scharre; “undertake a study on swarming platforms to examine the 
potential for low-cost uninhabited systems to impose costs on adversaries” 
(2014, p 8).   
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 Second recommendation to the DOA and USMC by Paul Scharre; 
“Conduct a series of experiments on swarming uninhabited air vehicles for 
persistent surveillance, close air support, aerial resupply and 
communications relay to support ground maneuver forces” (2014, p 9). 

This thesis took a step forward in answering the recommendations from the 

Center for New American Security. To answer the first question Chapter VI, analysis 

suggests that the rough cost estimate based on the data collected and the independent 

variables used is between $89 million and $0.33 million dollars for a single AV.   

To answer the second question this thesis presented the following information. 

Based on the adaptation of networking topologies in Chapter IV and the research and 

information presented from scholars and government agencies in Chapter II and V the 

communication relay mission is a feasible capability to peruse in future swarm UAVs. 

E. RECOMMENDATIONS 

 Future study is required to narrow down the price range for a swarm AV, 

additionally the analysis should apply more performance and physical variables to 

establish the price. Weight, price, and capability are a prime concern for the design of 

future swarm AVs, current UAS in the DOD inventory that were in this thesis 

characterized as small UAVs should be used to evaluate  the value that can be added to 

the fleet of small UAVs. Future swarm AVs should add to the capabilities mentioned in 

this thesis and not detract from the capabilities and flexibility of the UAVs characterized 

as small UAVs in this thesis.   
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APPENDIX. ADDITIONAL UAV SOURCE MATERIAL 

 

Figure 26.  Dragon Eye Overview (from AeroVironment, 2014) 
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Figure 27.  Wasp AE Overview (from AeroVironment, 2014) 
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Figure 28.  Puma AE Overview (from AeroVironment, 2014) 
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Figure 29.  Raven Overview (from AeroVironment, 2014) 
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Figure 30.  Shrike VTOL Overview (from AeroVironment, 2014) 
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Figure 31.  Switchblade Overview (from AeroVironment, 2014) 
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Figure 32.  RQ-7 Shadow Overview (from AAI Corporation, 2013) 
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Figure 33.  K-MAX, Cargo UAV Overview (from Lockheed Martin, 2010) 
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Figure 34.  RQ-21A Blackjack Overview (from INSITU, 2014) 
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Figure 35.  MQ-1 Predator Overview (from General Atomics Aeronautical, 
2014) 

  



 

 79

 

Figure 36.  MQ-9 Reaper/Predator B Overview 
(from General Atomics Aeronautical, 2014) 
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Figure 37.  Global Hawk Overview (from Northrop Grumman, 2014) 

Global Hawk 

G l oba l H aW'k 

A comb.ot - proven HAL E UAS 'vltll extroor-d lnory ISR copobiiiUes. provid ing netu·...-e o l -tlme high ,-esolutlon Im a gery of l.or g e 

geographi cal a reas o il day and night 1n a ll types of w e athe r T he A Jr Force G loba l H awk e volv e d f r om DARP A tech nology ond 
.. vas d e p l oyed ove rse a s shortly after· the S e p t e m ber- 11. 2001 ter-rorist onocks. T odoy. the ocu v e G lobol Hc!!iwk ent e r p n s.e IS made 

up o f three compliment a ry syst e ms. T h e G lobol H ov .. k Com ms Gl!lt e way was u nveile d In 2006 ond operot es the B a ttlefie ld 

A irborne Commun1couons Node (BACN). a comn"lu n acotlo n s system that re ceiv es. bndges. a nd d 1s tnbutes l n f o rmotton a mon g o il 
panrc:l p a n t.<a: n a b a ttl 9 T h..- G lob-al H awk Mulu - I N T •~ l mport.eont for <s;l t u ouon awan; •n...-<s;s a n d tnt: ... llrg ... nc ... .across hug ... o r Goa<J; o f l and 
a nd c~HTies the sensor systems E ISS (E nha nce d lntegroted Sensor S Uite) a n d ASI P (A i rbor ne S ignals In t e lligence P ayload). T h e 

G lobal Hawk Wide A r e a Surveillance c o rr1es the Mul t i -Pl aTform R a d ar T echnology Insertion Pro gram ( MP-RTI P ) . whiCh p rovides 

game-chongrng s n u ouonal avvareness and t orgeu n g lnforma tton on both fixed and moving t a rgets T he ongrnol G loba l H o w k 
n"'lode l IS n o·w flo.,vn on sc1e nt1ftc research m Jss1ons by N ASA. 

Back g r oun d : 

G lobal Ha.wk has Its ortglns In t h e 1995 H tgh-A ft ttude E nduran ce unmonned Aerial Veh ic l e A dvanced Concep t Technology 

D e monst ration (H A E UAV ACT O ) p rogram lrliUoted by t h e Def ense Adva nced Resear c h P r o j ects Agency (DAR P A ) ond the 

D e f e n s e A i rborn e Reconna issance O ffice (OARQ) _ T h e G lobal Ho.,vk e f f o n succee d ed becau s e It focused on t h e d esign and 

const..-ucuon of o pra ctlcol a1..- v e hicle th.!llt was deve lopme ntally m a t u r e enou g h t o b e transruoned Into on oper a uonol w e a pon s 

syst em. While son a developmental syst e m . the G lobo l H owk syst e m begon supporting overseos contin gency ope rotlo n s o n ly 
t>.vo n 'lonths a fte r the S e pte mbe r 11. 2001 attacks_ T h e syst e m h os surpossed 125.000 R i g h t hou rs ond rnld\.vay t hrough 2014 h od 

100.000 combo tlope..-o t l onol flight hours~ 

Distinctions: 

World R e-cords 

• April 23. 2001: G lobo l H owk b eco me the n rst unm a nned. pow ered otrcraft t o c ross the ·worl d 's lorgest ocean "vh en It londed 

In Australia o t 8 :40 p .m locol u rne o tter o 23-hour. 2o-m1nut e tnp ocr oss t he P oclflc Oceon. 
• Morch 29. 2013 : G loba l H a v.rk set t h e endur ance r e-cor d foro full- sca le . operouonal u n m anned o l rcrafi: w hen It completed o 

3 4 _3 hour flight a t olu tudes up t o 60,000 f eet bosed o u t o f G r and For ks A ir- Force B a se In North Dak o t o. T he pilots and c rew 

w e re all wome n. w h ich oil s e t o r e cor d for t h e longest o il -fema l e G lobal H awk flight. 

Awards 

• Dr. James G Roche Sustainment Excellence Award: The Global Hawk program receiVed this prestigious award from the U.S. 

Air Force for demonstraung the most Improved performance In aircraft maintenance and loglsllcs readiness In fiscal years 

2012 and 2013. Global Haw k showed significant Improvements 1n aircraft availability. mission capability and total non-m1ss1on 

capability for maintenance and supply. 

• U.S. Air Force Safety Record: Global Hawk has been designated as the platform with the best safety record In the U.S. Air 

Force In 2013. 

• Robert J. Col lier Trophy: In 2000. Northrop Grumman along with key government and Industry partners received this 

coveted trophy for des1gnrng. building. testing. and operating Global Hawk. 

• Airworthiness CertificatiOn: Global Hawk Is the first UAS to achieve a military airworthiness certlflcauon. which along With the 

certificate of authonzatlon from the Federal AV1atlon Admlnlstratlon. recognizes Global Hawk's ability to routinely fly within 

national airspace. 

Specifications (Multi-INT and Wide Area Surveillance models) 

Wingspan: 130 9 fl (39.9 m) 

Length: 47.6 tt (14.5m) 

Height: 15.4 fl (4.7 m) 

Gross Take-off Weight: 32,250 lbs. (14,628 kg) 

Maximum Altitude. 60.000 ft (18.3 km) 

Payload : 3.000 lbs (1.360 kg) 

Ferry Range: 12.300 nm (22}80 km) 

Loiter Velocity: 310 knots True Air Speed (T AS) 

On-station Endurance at 1.200 nm. 24 hrs 

Maximum Endurance: 32+hrs 
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